Investor relations US | EN EU | EN MX | ES DE | DE FlexQube CartsClose menu All Industrial CartseQart®Pallet & Container CartsShelf CartsKit Carts & Specialised SolutionsFlow CartsHanging CartsMother-Daughter CartsLiftRunnerPartsView all categoriesAutomationCase studiesNewsContact Type a word to search Search for carts, news posts and more. Suggestions Tugger cart eQart Find a sales person How do I order? 0 Menu CartsClose menu All Industrial CartseQart®Pallet & Container CartsShelf CartsKit Carts & Specialised SolutionsFlow CartsHanging CartsMother-Daughter CartsLiftRunnerPartsView all categoriesAutomationCase studiesNewsContact Customer careCustom DesignBecome a FlexQube DisitributorInvestor RelationsIndustries About FlexQubeCareerFlexQube ShopAftermarket Sales & Service LinkedIn YouTube Facebook Instagram Twitter Investor relations US | EN EU | EN MX | ES DE | DE 15 July 2021 Logistics 4.0 and the Mobile Industrial Robot Brendon Turner Regional Sales Manager - Midwest News At the height of the Covid -19 pandemic, supply chains and internal logistics processes across the globe witnessed their fair share of disruption. The need to secure supplies closer to home and implement social distancing within industrial facilities meant the industrial sector had to get innovative quickly. To ensure operator and material safety in a pandemic world, industrial facilities accelerated their adoption of digital transformation solutions and automation technology. Thus, a pandemic inadvertently increased the implementation of logistics 4.0 concepts across the globe. But what is Logistics 4.0? Logistics 4.0 refers to the application of digitalization to create cyber-physical solutions with the capacity to automate and gain real-time control of logistics networks. The digitalization and automated solutions that can be applied include the use of simulation modeling, digital twin, edge hardware, and mobile industrial robots to automate logistics management. The goals of logistics 4.0 are similar to that of industry 4.0, and they include the ability to gain insight from captured logistics data to automate logistics processes and optimize material or supply flow. Logistics 4.0 is also expected to be agile and support flexible industrial processes to maximize productivity. This means achieving logistics 4.0 is integral to achieving your industry 4.0 goals. How Does Logistics 4.0 Work? Logistics 4.0 attempts to apply data analysis, automation, and digital transformation technologies to optimize both internal and external logistics operations. Here, internal logistics operations refer to the material handling system within a manufacturing or warehousing facility. Logistics 4.0 also focuses on creating an interconnected system where the interexchange of data drives the system. The interconnected system usually consists of automated industrial robots tasked with the physical material handling process, IoT devices to monitor the system, the industrial cloud to centralize data aggregation, and edge devices to decentralize data analytics. This cyber-physical interconnected system also integrates the application of machine learning and AI to deliver diverse levels of autonomy to the material handling process. The goal of Logistics 4.0 is to deliver cross-facility automation, which leads to an optimized production cycle where material flow occurs without unexpected downtime. Logistics 4.0 intends to implement a flexible material handling system with the capacity to react dynamically to changes in real-time. These changes could be inspired by an increase in customer demand or defective equipment. The Role of Industrial Robots in Achieving Industry 4.0 Industrial robots refer to both automated guided vehicles and autonomous mobile robots with the ability to navigate shop floors without human intervention. AGVs and AMRs are usually at the center of every autonomous material handling system implementation and are equipped with the processing abilities to analyze data. Industrial robots are used in a variety of ways to support the material handling process and material flow within the shop floor. Some of the diverse ways industrial robots are used include: 01. Assembly Support The assembling process involves moving parts from one workstation to another to put components together. During assembly, the flow of materials and parts are crucial to optimizing productivity and the quality of throughput. Industrial robots handle the material flow autonomously thus, limiting human error and ensuring materials get to stations within specified timelines. 02. Transportation The major function of an industrial robot is to transport materials and tools across the factory floor in an orderly way. Fully autonomous robots are equipped with loading and unloading features that enable them to transport materials with complete autonomy. 03. Warehousing Runs Order picking and milk runs are essential aspects of warehousing. Industrial robots automate the process of moving products from storage to the docks and across the warehouse. Fully autonomous robots can navigate complex environments and avoid traffic using sensors and other navigation technologies. 04. Just-in-time Delivery Optimized material flow is characterized by just-in-time delivery processes which ensure materials get to the point where they are required at exact times. Just-in-time delivery also ensures materials do not get stuck in transit, and this is crucial when transporting items with short shelf lives. 05. Data Collection Industrial robots traverse through the diverse areas of a facility multiple times, making them good candidates for collecting location data. If equipped with cameras and sensors, industrial robots can capture specific data sets and transfer the data it collects to a centralized platform such as an IoT platform. The Benefits of Digitizing Logistics and Material Handling with Industrial Robots Automating the material handling process to deliver Logistics 4.0 using industrial robots comes with multiple benefits that cut across improving safety and reducing operational costs. The accident statistics associated with traditional material handling equipment such as forklifts make ensuring safety when transporting heavy items an issue industrial robots address. Other benefits include: 01. Optimized Scheduling Optimized logistics and supply chain management relies on developing high-performing schedules and meeting them. Industrial robots can be fed scheduling data to ensure they deliver items at the specified time. Fully autonomous robots can also tweak their speeds to meet delivery schedules, although a maximum speed barrier exists to ensure safety. 02. Reduced Wastage Industrial robots reduce material waste in two major ways. First, they apply gentle and precise movements when handling fragile items, and secondly, they deliver materials with short shelf lives on time. Proper handling and meeting delivery deadlines ensure scrapping is reduced in manufacturing and warehousing facilities. 03. Enhanced Services The material handling process is a repetitive task that can be done tens of times during a production cycle. Humans are known to be prone to errors due to the boredom or laxness that comes with repetition. Industrial robots are not affected by repetitive tasks, and they handle each run with the same high accuracy as the last. 04. Reduced Operational Cost Increased safety on the shop floor, optimized scheduling, and reduced wastage all lead to a reduction in the cost of managing a warehouse or producing products. Conclusion Like Industry 4.0, Logistics 4.0 leverages data and automation to deliver optimized material handling processes and an interconnected shop floor. In internal logistics, industrial robots play important roles when implementing data-driven processes to deliver high-performing material handling systems Reach out to us! U.S. Regional Sales Manager - Midwest Brendon Turner +1 (937) 474-9699 Email me U.S. VP of Sales North America Michael Gore +1 (843) 509-1624 Email me U.S. Sales Manager US Mid Atlantic Shawn Lynch +1(864) 434-6219 Email me Up next News 24 June 2021 The Comprehensive Guide to Agile Manufacturing This guide will serve as a roadmap for implementing agile manufacturing strategies to meet an increasingly changing world. News 19 July 2021 FlexQube awarded 1 MEUR project from Tesla Tesla has awarded FlexQube a material handling cart project worth 1 MEUR for the new Gigafactory in Berlin. Deliveries will start in the third quarter of 2021. Want to know more? Got questions? Please don't hesitate to contact us. (+44) 0795 177 0453 LinkedIn YouTube Facebook Instagram Twitter US | EN EU | EN MX | ES DE | DE ©2022 FlexQube – All rights reserved Page generated on Master: 2025-01-27T16:48:35+00:00 Contact us Close Hi, how can I help you? First Name Last Name Email Company City Country Select out country name... Afghanistan Albania Algeria American Samoa Andorra Angola Anguilla Antigua & Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bonaire Bosnia & Herzegovina Botswana Brazil British Indian Ocean Ter Brunei Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Canary Islands Cape Verde Cayman Islands Central African Republic Chad Channel Islands Chile China Christmas Island Cocos Island Colombia Comoros Congo Cook Islands Costa Rica Cote DIvoire Croatia Cuba Curacao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic East Timor Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Ter Gabon Gambia Georgia Germany Ghana Gibraltar Great Britain Greece Greenland Grenada Guadeloupe Guam Guatemala Guinea Guyana Haiti Hawaii Honduras Hong Kong Hungary Iceland Indonesia India Iran Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jordan Kazakhstan Kenya Kiribati Korea North Korea South Kosovo Kuwait Kyrgyzstan Laos Latvia Lebanon Lesotho Liberia Libya Liechtenstein Lithuania Luxembourg Macau Macedonia Madagascar Malaysia Malawi Maldives Mali Malta Marshall Islands Martinique Mauritania Mauritius Mayotte Mexico Midway Islands Moldova Monaco Mongolia Montserrat Morocco Mozambique Myanmar Nambia Nauru Nepal Netherland Antilles Netherlands (Holland, Europe) Nevis New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palau Island Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Island Poland Portugal Puerto Rico Qatar Republic of Montenegro Republic of Serbia Reunion Romania Russia Rwanda St Barthelemy St Eustatius St Helena St Kitts-Nevis St Lucia St Maarten St Pierre & Miquelon St Vincent & Grenadines Saipan Samoa Samoa American San Marino Sao Tome & Principe Saudi Arabia Senegal Seychelles Sierra Leone Singapore Slovakia Slovenia Solomon Islands Somalia South Africa Spain Sri Lanka Sudan Suriname Swaziland Sweden Switzerland Syria Tahiti Taiwan Tajikistan Tanzania Thailand Togo Tokelau Tonga Trinidad & Tobago Tunisia Turkey Turkmenistan Turks & Caicos Is Tuvalu Uganda United Kingdom Ukraine United Arab Emirates United States of America Uruguay Uzbekistan Vanuatu Vatican City State Venezuela Vietnam Virgin Islands (Brit) Virgin Islands (USA) Wake Island Wallis & Futana Is Yemen Zaire Zambia Zimbabwe Comments* Attach a file (optional) Upload Maximum file size is 10mb. Something went wrong Please try again or contact sales. We will get back to you within 24 hours. (Unless it’s during holidays.)